Introduction

- Hemispheric specialization is a powerful design principle for brains, ranging from the avian neural clumping design to the human layer design. In humans, it provides:
 - Complementary information processing styles in the two hemispheres
 - Efficient parallel independent processing
 - Powerful interactive effects where one hemisphere reinforces the other
 - An effective platform for monitoring and control of one hemisphere by the other

We will illustrate these modes using lateralized lexical decision and letter matching.

Mode 1: Degrees of Hemispheric Independence

- Task: Lateralized lexical decision. Participants have to indicate by a unimodal button press whether a pronounceable target letter string is an English word or not.
- Lateralized lexical decision correlates with reading competence in each hemisphere (Weems & Zaidel, 2004).
- Hemispheric reading competence is greater than actual hemispheric performance during normal reading.

Lexical decision of lateralized targets (underlined) with lateralized distractors in the opposite visual field.

cipe + your

- Hemispheric specialization for lexical decision can vary from complete independence (“direct access”) (Iacoboni & Zaidel, 1996) to limited sharing of specialized resources (“interhemispheric interaction”), and to exclusive specialization in one hemisphere (“callous relay”) (Zaidel, Clarke, & Suyenobu, 1990) as the processing load increases (Zaidel et al., 1988).
- Direct access is determined by the input visual field rather than by the responding hand (Weems & Zaidel, 2005).
- Direct access can be increased by distractors in the visual field opposite the target (Fernandino, Iacoboni, & Zaidel, 2007).

Mode 2: Redundant Target Effects

- Multiple copies of targets in the lateralized lexical decision task show a “horse race” pattern, dominated by the left hemisphere (Zaidel & Rayman, 1994).
- This is in contrast to hyper redundant target effects in simple reaction time, which violates and exceeds the “horse race inequality” (Iacoboni & Zaidel, 2003).

Mode 3: Parallel Processing: The Bilateral Distribution Advantage (BDA)

- Matching letter shapes is faster within than between the visual fields.
- Matching letter names is faster between than within the visual fields (the BDA) (Copeland & Zaidel, 1996, 1997).
- By contrast, comparing faces either head-on or in profile is better within than between the visual fields.
- The BDA requires that the following three conditions co-occur:
 1. Each hemisphere can perform the task
 2. Parallel processing makes up for callous delay
 3. There is a callous channel for transferring the comparison code directly

Matching (same, different) letter shapes versus letter names

Bilateral - LVF, “Same” Trial
Unilateral - RVF, “Same” Trial

Shape Matching
Name Matching

Conclusions

- Interhemispheric interaction increases the complexity of cognitive operations possible in each hemisphere alone.
- The hemispheres can shift across modes of interhemispheric interaction dynamically as a function of task demands.

References

Contact: ezaidel@psych.ucla.edu